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A new method for phase determination in X-ray crystallography is proposed.

The method is based on the so-called `minimum-charge' principle, recently

suggested by Elser [Acta Cryst. (1999), A55, 489±499]. The electron-density

function � is sought in the form ��x� = j �x�j2, where  is an n-component real

function. The norm
R j �x�j2 dx is minimized under the constraint imposed by

the measured data on the amplitudes of Fourier harmonics of �. Compared with

the straightforward implementation of the `minimum-charge' scheme, the

method attenuates the Gibbs phenomenon and is also capable of extrapolation

of the diffraction data beyond the set of measured amplitudes. The method is

applicable to quasicrystals under the condition that the number of components n

of the function  is bigger than the dimensionality of the `atomic surface'. It has

been successfully tested on synthetic data for a Fibonacci chain and octagonal

tiling. In the latter case, the reconstructed density map shows the shape of the

atomic surface, despite relatively low resolution data.

1. Introduction

The vast majority of the existing direct methods of X-ray

structure determination approach the phase problem as a

problem of constrained minimization. The quantity to mini-

mize plays the role of the likelihood functional, optimization

of which is subject to constraints imposed by the known

structure-factor amplitudes. The choice of this quantity is a

matter of trade-off between three requirements. First, this

functional should approximately represent the common

notion about the likelihood of a given density function.

Second, it should be effectively computable and, ®nally, it

should allow for ef®cient minimization. Usually none of these

requirements are fully satis®ed. Consider, for instance, the

traditional direct methods based on the conditional prob-

ability distribution of the structure invariants (Harker &

Kasper, 1948; Karle & Hauptman, 1950). The derivation of the

expressions for the conditional probability takes as a starting

point the assumption that unconditional probability of the

density distribution (its Bayesian prior) is a translationally

invariant measure on the ensemble of N �-like atoms in a unit

cell (Cochran, 1955). Clearly this approach misses the physical

constraint on a minimal distance between the atoms. Although

this prior measure allows one to express the conditional

probability of the phase invariants in a closed form (Cochran,

1952, 1955; Hauptman & Karle, 1953), the resulting formulae

are effectively computable only for invariants of small order.

As a result, instead of the true conditional probability func-

tion, the practical algorithms use some sort of ad hoc

approximation, usually based on a combination of the triplets

and quartets [see, for example, the `Shake-n-Bake algorithm'

(Weeks et al., 1993)]. However, even these simpli®ed func-

tionals are not easy to optimize. The existing phase re®nement

methods are based on iterative procedures and can easily

become stuck in a local minimum of a functional.

Recently, Elser (1999) suggested the so-called principle of

minimum charge. According to this principle, the correct set of

phases should minimize the average charge density (the

unknown Fourier component with k = 0, which has to be

added to the density to make it non-negative). The rationale

behind this principle is that the functions satisfying it tend to

have shallow highly degenerated minima and spiky maxima,

which is what one would expect of an atomistic density func-

tion. Compared with the solid statistical foundations of the

conventional direct methods, the principle of minimum charge

may look arbitrary. However, this comparison is not fair

because, on the way from the ®rst principles to the practical

implementation of the conventional methods, many ad hoc

assumptions are made. In contrast, the principle of minimum

charge is almost readily applicable in the phase re®nement

algorithms. Additional advantage of this principle is that it

could be used without modi®cation for the determination of

the structure of quasicrystals and non-commensurate crystals.

This is especially important because the conventional methods

fail when applied to these structures. Indeed, a naive attempt

to approximate quasicrystals by crystals with a very large

number N of atoms in the unit cell gives rise to meaningless

results. As N tends to in®nity, the normalized structure factors

diverge as EH = O�N1=2� and the triplet amplitudes as AHK =

O�N�, leading to the conclusion that the phases of all triplets



�HKL = 0. This divergence re¯ects the fact that the correla-

tions between atomic positions in quasicrystals are anom-

alously strong with respect to what one would expect from the

Bayesian prior described above.

A straightforward implementation of the principle of

minimum charge [e.g. that proposed by Elser (1999)] implies

solving a minimax problem. Indeed, the set of phases �K

satis®es the principle if the deepest minimum of the `density

with zero average',

�0�r� � 2
P
K

jFKj cos�K � rÿ�K�; �1�

over r has the maximal possible value over all possible sets �K.

Robust algorithms for ®nding a global saddle point are much

more dif®cult to design than those for ®nding a global

minimum or maximum. This is because the methods which are

usually applied to prevent the algorithm from becoming stuck

with a local minimum (e.g. simulated annealing or multiple

runs) do not work in the case of local saddle points. In this

article we propose a version of the principle of minimum

charge which can be formulated as a problem of global

minimization, and not as a minimax problem, allowing one to

circumvent the shortcomings of a straightforward approach.

The naive implementation of the principle of minimum

charge suffers from another drawback, which is due to the

so-called Gibbs phenomenon. In order to understand this

problem, consider the case when the true values of all phases

�K are known. Suppose also that the correction for the atomic

form factors is included in the values of the structure factors

FK in (1), or in other words that the atoms are point-like.

Owing to the Gibbs phenomenon, any ®nite sum of the form

(1) presents negative `bumps' around the positions of atoms.

The depth of these artifacts may be as big as 20% of the peak

height. This picture is clearly different from multiply degen-

erate shallow minima that one would expect of a function

satisfying the principle of minimum charge. In other words, the

correct set of phases gives a density function (1) which is

suboptimal from the point of view of this principle. Any

further optimization of it may only introduce errors in the

values of phases. The proposed method signi®cantly attenu-

ates the importance of the Gibbs phenomenon, although it

does not remove it completely.

2. Method

2.1. Representation of the density function

The cornerstone of the new method is the representation of

the atomic density function. The traditional way of recon-

structing this function consists of using ®nite Fourier sums (1)

with possible application of weights aimed to attenuate the

Gibbs phenomenon. A different approach is used here. The

density function is approximated by a square of a ®nite

Fourier sum. More precisely, the density function ��x� is

modelled as

��x� � j �x�j2; �2�

where  �x� is a multi-component real function. Each compo-

nent  � of  has a ®nite Fourier spectrum,

 ��x� �
P

K2�

~ �;K exp�iK � x�; �3�

where � is a ®nite subset of reciprocal-lattice vectors. The

complex coef®cients ~ �;K satisfy the condition

~ �;ÿK � ~ ��;K: �4�
Before going any further, let us discuss the rationale behind

this representation. Recall that the density function satisfying

the principle of minimum charge should possess the following

properties:

(i) The amplitudes of its Fourier components for the set

of measured Bragg re¯ections should correspond to the

measured data FK.

(ii) The global minimum of the function should be highly

degenerate (see Fig. 1).

The traditional way to represent the density function by a

®nite Fourier sum automatically guarantees that the condition

(i) is satis®ed. However, the condition (ii) cannot be expressed

in a closed form as an explicit constraint on the phases �K. On

the other hand, degenerate global minima occur naturally in

the functions of type (2) when  �x� has multiple zeros. At the

same time, the condition (i) can be explicitly imposed on the

function (2). This constraint can be formulated as a system of

equations of the fourth order on the variables ~ �;ÿK (see

Appendix A).

Mention should be made of the criterion for choice of the

support � for the Fourier spectrum of the function  in (3).

Clearly, if the set � is too small, the condition (i) may be

impossible to satisfy. This happens, for example, if there are

wave vectors L belonging to a set � of measured data which

cannot be represented as L = Hÿ K, where H;K 2 �. On the

other hand, choosing the set � equal to the set � guarantees

that any constraint on the amplitudes of Fourier components

of density ~�K,

~�K �
R
��x� exp�ÿiK � x� dx; �5�
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Figure 1
Phase re®nement based on the principle of minimum charge leads to the
reconstructed density maps with highly degenerate shallow minima.
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where K 2 �, can be satis®ed in the representation (2).

Indeed, by assuming the following constraint on the ampli-

tudes of ~�K,

j ~�Kj � aK;

then setting

~ �;K �
"ÿ1 if K � 0, � � 0

�"=2�aK if K 6� 0, � � 0

0 if � 6� 0

8<:
gives the correct Fourier components of � in the limit "!�0,

j ~�Kj � aK �O�"�:
Note that in this case the support of the spectrum of � is

roughly twice as large in the reciprocal space as the set �. In

other words, the representation (2) allows for extrapolation of

the structure factors. One can further extrapolate the experi-

mental data by choosing an even larger set �. The limit of

possible improvement of the resolution in this way is set by the

occurrence of spurious peaks in the density map in the case of

over-extrapolation owing to the increased sensitivity of the

result to the errors in the measured data.

2.2. Optimization criterion and constraints

The representation (2) of the density is a non-negative

function. Hence the average value of � can be used as a ®gure

of merit for the optimization; in other words, the principle of

minimum charge regains its original meaning. It should be

emphasized that, instead of the problem of ®nding a global

saddle point (global maximum of global minima), we deal here

with an easier problem of constrained minimization. The role

of parameters is played by the Fourier components ~ �;K of

the function  . The average density is expressed through
~ �;K as

h�i � P
K2�

P
�

j ~ �;Kj2: �6�

The parameters ~ �;K can be considered as a real vector in the

Mn-dimensional space, where M is the number of points in the

set � and n is the number of components of  . The principle

of minimal charge thus boils down to the problem of

constrained minimization of the norm of this vector.

Consider now the constraints imposed by the measured

data on the values ~ �;K. Let us assume that the amplitudes of

the structure factors jFKj are measured for the wave vectors K

belonging to a subset � of the reciprocal lattice. Then the

seemingly obvious constraint on the density function ��x�
from (2) consists of the requirement that

j ~�Kj � jFKj for any K 2 �:

This condition, expressed in terms of the Fourier components

of  from (3), takes the form

P
�

P
H;KÿH2�

~ �;H ~ �;KÿH

�����
����� � jFKj for any K 2 �: �7�

This constraint, however, does not take into account the effect

of the Gibbs phenomenon. The importance of this effect is

clear from Fig. 2. This plot shows the function ��x� obtained by

the minimization of the average density (6) under the

constraints (7). The structure factors used here correspond to

a one-dimensional crystal with one atom per unit cell, i.e.

jFKj = 1 for all K 2 �. Clearly the phasing on Fig. 2 is incor-

rect. The reason for this is that the correct set of phases would

correspond to a function with deep negative bumps around

the `atom' because of truncation of data in the reciprocal

space. The optimization routine attempts to ¯atten these

bumps out and align all minima on the same level, giving rise

to an incorrect solution.

The standard approach to reduction of the Gibbs

phenomenon consists of using the windowing in the Fourier

domain. As applied to (7), the windowing consists of multi-

plying the amplitudes of the structure factors by weights,

j ~�Kj �
P
�

P
H;KÿH2�

~ �;H ~ �;KÿH

�����
����� � wKjFKj: �8�

The choice of the coef®cients wK is a matter of trade-off

between softening the truncation of data on the reciprocal

lattice and preserving the spatial resolution of the density

map. In the ®eld of digital signal processing, there exist many

windowing formulae designed to reduce the magnitude of the

Gibbs phenomenon, e.g. Welch or Hann windows (Rabiner &

Gold, 1975; Bloom®eld, 1976). Nonetheless, instead of using

these formulae, we shall derive the expressions for wK which

are optimized from the point of view of the discussed method.

Ideally, the weights wK should guarantee that the global

minimum of the average density (6) with the constraints (8)

corresponds to the density map � with the correct phases. The

weights should be a function of the sets � and � only, and

should not depend on the values of the structure factors FK.

Unfortunately, such ideal weights do not exist. This is clear at

Figure 2
Artifacts occurring owing to the Gibbs phenomenon. The original
structure is a one-dimensional crystal with one atom per unit cell. The
function  has two components (n = 2). The set � includes the ®rst ten
vectors of the reciprocal lattice, and the set � includes the same vectors,
their opposites and the zero vector.



least from the fact that perfect phasing is impossible when the

set of measured data is too small compared with the number of

atoms in the unit cell. Nevertheless, as long as the resolution of

the measured data is suf®ciently high, there exists an almost

optimal set of weights. More speci®cally, the weights wK

chosen in such a way as to guarantee the correct phasing for

the structure with one atom per unit cell should produce

reasonable results for other structures as well, provided that

the peaks in the density map do not overlap.

Let us start the construction of the optimal weights with the

case of a one-dimensional crystal with one atom in a unit cell.

First of all, note that the constraints in (7) with jFKj = 1 are

equivalent to those of (8) with jFKj = 1=wK. In other words,

one can interpret the density map of Fig. 2 as a result of

correct phasing of a priori unknown structure-factor ampli-

tudes jFKj = 1=wK. Clearly, the number of peaks in this density

function depends on the number of constraints in (7). One

naturally expects that the minimization of the global charge

with only one constraint would lead to some very simple

structure. Indeed, as shown below, if the set � in (7) contains

only one wavevector K0, which is equal to the elementary

period of the reciprocal lattice, the minimization of the

average density gives rise to a structure with one atom in a unit

cell. Let ~ �;K = ~��;K be the solution of (7) with the single

constraint jFK0
j = 1. One can use these values to construct the

following set of weights:

wK �
P

�

P
H;KÿH2� ~��;H ~��;KÿH

�� ��P
K2�

P
� j ~��;Kj2

: �9�

This set of weights guarantees that the density map obtained

with a single constraint will satisfy the principle of minimum

charge for any number of constraints. Indeed, ~ �;K = w
1=2
K0

~��;K
obeys (8) with the weights (9) and jFKj = 1 for all K 2 �. In

other words, the weights wK are optimal for the set �.

Let us actually compute the optimal weights for the case

when the set � includes the nodes ÿN;ÿN � 1; . . . ;N of the

one-dimensional reciprocal lattice. We suppose that  �x� has

only one component and use simpli®ed notations by writing
~ k or Fk instead of ~ �;K or FK (here k is the number of the

node). In the case when only the amplitude of the structure

factor F1 is known, there is only one constraint on the values

f ~ ig, PN
k�ÿN�1

~ k
~ �kÿ1

���� ���� � w1jF1j: �10�

Introduction of a Lagrange multiplier means that the

constrained minimization of the average density can be

replaced by ®nding an unconstrained extremum of the

following quantity,

PN
k�ÿN

~ k
~ �k � �

PN
k�ÿN�1

~ k
~ �kÿ1

���� ����: �11�

Note that the second sum in (11) can always be made real and

positive by an appropriate shift �x of the coordinate system

and multiplication of ~ k by exp�ik�x�. Then, if expression (11)

has an extremum at a given f ~ ig, the same is true for the

expressionPN
k�ÿN

~ k
~ �k � ��=2� PN

k�ÿN�1

� ~ k
~ �kÿ1 � ~ �k ~ kÿ1�: �12�

Differentiation with respect to ~ gives the equation for the

point of extremum,

~ k � ��=2�� ~ kÿ1 � ~ k�1� � 0: �13�
(Here we assume ~ ÿNÿ1 = ~ N�1 = 0.) In other words, the

solution of the principle of minimum charge with the

constraint (10) should be an eigenstate of a lattice Laplace

operator with zero boundary conditions beyond the set �.

Straightforward calculations show that the function

~ k � C cos �k=2�N � 1�� � �14�
gives the smallest value of the average density. The density (2)

is a sum of peaks centred at the lattice nodes

��x� � P
n2Z

f ��2N � 2��xÿ n��; �15�

where the shape of an individual peak is given by the following

formula,

f �u� � C�cos��u�=�1ÿ 4u2��2: �16�
As one might expect, in the limit N!1 the density map

tends to a sum of � functions corresponding to a crystal with

one atom per unit cell. The formula (9) gives the values for the

optimal weights,

wk �
sin �2N � 3ÿ jkj� �� � � �2N � 3ÿ jkj� sin��� cos�k��

sin �2N � 3� �� � � �2N � 3� sin��� cos�k�� ;

�17�
where � = �=2�N � 1�. The results of testing of these weights

with the structure factors corresponding to one atom in the

unit cell are shown in Fig. 3.
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Figure 3
Reconstructed density map for the same test case as that of Fig. 2, but
with constraints (8). The values of the weights are given by (17).
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Consider now the ways to generalize the above construction

of the optimal weights to more than one dimension. The

constraints (8) may uniquely determine an atomistic structure

only if the wavevectors from the set � span the entire reci-

procal lattice (Gabardo, 1999). The minimal number of

constraints is thus equal to the dimensionality d of the crystal.

Solving the problem of minimum charge with the known

structure factors for the set of wavevectors � = fKig; i =

1; . . . ; d, yields to a formula similar to (13),

~ �;K �
Pd
i� 1

��i=2�� ~ �;KÿKi
� ~ �;K�Ki

� � 0; �18�

where ~ �;K = 0 for K =2 �. The weights can be obtained from

the solution ~ �;K of this equation using (9).

Contrary to the one-dimensional case, (18) does not yield to

a unique set of optimal weights. First of all, the choice of the

wave vectors Ki is ambiguous. Clearly, d vectors Ki spanning

the entire reciprocal lattice form its basis. However, there are

many ways to choose a basis of a lattice in more than one

dimension. The other problem is related to the choice of

Lagrange multipliers �i . In (13), the solution  k is always one

of the eigenstates of the Laplace operator and the role of the

parameter � is restricted to mere selection of the eigenstate. In

contrast, ~ �;K in (18) may vary continuously with �i. In order

to resolve the ambiguity, one needs to recall that the density

corresponding to the solution of the ®nite difference equation

(18) describes the structure with one atom at the origin of the

unit cell. In other words, the function  �x� should have a sharp

peak at the origin, i.e. its Fourier components ~ �;K should vary

slowly across the domain �. The requirement that (18) should

admit such a slowly varying solution determines the choice of

parameters Ki and �i.

2.3. Quasicrystals and incommensurate structures

Consider now the application of the discussed method to

the deterministic quasicrystals and incommensurate structures

in general. These structures can be conveniently described

using the so-called superspace or `cut-and-project' method (de

Wolff et al., 1981; Kalugin et al., 1985; Duneau & Katz, 1985;

Elser, 1986). According to this approach, the density function

of quasicrystals can be obtained as a cut through a periodic

function in a space of higher dimensionality. The Fourier

spectrum of the structure is obtained as a projection of the

spectrum of the periodic function on the cut direction, and

thus consists of a discrete sum of � functions. If the direction of

the cut is incommensurate with the periodicity, each � peak in

the Fourier spectrum of the quasicrystal corresponds to a node

of the reciprocal lattice of the periodic function. By this means,

the phase problem for quasicrystals can be reformulated in a

conventional way as a problem of phasing for a periodic

function in a space of higher dimensionality.

For the case of point-like atoms, the density function of a

quasicrystal in real space is a discrete sum of � functions. The

corresponding periodic density function consists of �-like

distributions on submanifolds, commonly referred to as

`atomic surfaces' (Janssen, 1986; Bak, 1986). This brings up

again the question of optimality of the weight factors wK from

(8). Indeed, the weights obtained following the method

described in the previous section are appropriate for distri-

butions of narrow non-overlapping peaks. Atomic surfaces

clearly do not fall into this category. As a result, one could

expect that using the weight factors optimized for point-like

atoms might give rise to incorrect results in the case of atomic

surfaces. Nevertheless, lacking any better alternative, we

applied these weights for quasicrystals as well. Despite

concerns, the results of the numerical tests described below

show no signi®cant distortion of the density map.

Another problem emerges when the atomic surfaces are

discontinuous, which is the case for all known deterministic

structure models of real materials. The point is that, owing to

the ®nite resolution in the reciprocal space, the boundary of

the atomic surface is inevitably smoothed out. As a result,

when the physical space cuts through an atomic surface near

its boundary, the amplitude of the corresponding peaks in the

density map is reduced. Similarly, when the cut misses the

atomic surface by a short distance, a `phantom' peak appears

in the density map. In reality, both of the above phenomena

occur simultaneously, because of the so-called `closedness'

property of the atomic surfaces (Katz, 1989). This results in

the occurrence of double peaks of reduced intensity, which are

often separated by a distance much smaller than the typical

interatomic spacing. A careful analysis shows that such double

peaks in places group together to form more complex clusters

(Kalugin & Katz, 1993). It should be emphasized that all these

artifacts are not speci®c to the phasing method and will exist in

any reconstructed quasicrystalline density map. They should

not be confused with the phason disorder in real quasicrystals

(Lyonnard et al., 1996; de ArauÂ jo et al., 1996; de Boissieu et al.,

1995), which manifests itself in the occurrence of true partially

occupied sites at the same positions.

2.4. Choice of the number of components of w

Up to this point, the number of components of the function

 �x� has been of no importance to us. However, because of the

iterative nature of the optimization algorithm, this parameter

plays an important role in the case of quasicrystalline struc-

tures. The problems that arise in the case when the number of

components of  is too small are clear from Fig. 4. This ®gure

depicts a one-dimensional atomic surface in the two-dimen-

sional space crossed by a line of zeros of the one-component

function  . The resulting hole can only be removed by pushing

it towards the boundary of the atomic surface. It may occur,

however, that pushing the hole inwards decreases the average

density. In this case, the algorithm will converge to a local

minimum.

The above problem could be avoided if the function  had

two components. In this case, the zeros of  are points. Should

such a point fall onto the atomic surface, it could be easily

pushed away by a small perturbation of  . The same applies to

the case of more than two dimensions. In this case, the number

of components of  should be bigger than the dimensionality

of the atomic surface.



3. Results

The results presented in this section were obtained numeri-

cally using the algorithm of constrained minimization

described in Appendix A. The algorithm was tested on the sets

of synthetic data including a one-dimensional crystal and a

quasicrystal, as well as a two-dimensional quasicrystalline

structure. No rotational symmetry was assumed in any of the

cases. When the structure actually possessed additional

symmetry, it was recovered as a result of optimization.

Owing to its iterative nature, the algorithm of Appendix A

does not guarantee convergence to the global minimum of the

average density. It is worth noting, however, that for all tested

structures the correct phasing corresponds to the deepest of

the found minima.

3.1. One-dimensional crystals

The test structure includes ®ve point-like atoms. Their

`charges' and fractional coordinates x are given in Table 1. As

the structure does not possess central symmetry, the recon-

structed density can correspond to any of the enantiomorphs

with equal probability.

The density map shown in Fig. 5 has been obtained with the

®rst 12 structure-factor amplitudes. The function  had two

components. The support of the Fourier spectrum of each

component � from formula (3) included the wavevectors from

the interval �ÿ12; 12�. The positions of ®ve peaks in Fig. 5

correspond to the coordinates of atoms in Table 1 up to a

global translation. The amplitudes of the peaks are also

qualitatively recovered. One can remark, however, that the

two smallest peaks in Fig. 5 are noticeably different, although

they correspond to identical atoms. The value of the average

density is equal to 6.636, which is about 1% smaller than the

total charge of 6.7 in Table 1. The iterative optimization, which

converged to the global minimum solution in 14 of 20 trials

when starting with random normally distributed ~ �;K, was

70%, giving a 70% success rate.

The test structure from Table 1 was also used to benchmark

the extrapolating capabilities of the algorithm. The input data

was restricted to the ®rst nine structure-factor amplitudes.

Note that the structure recovery with any smaller data set

would be impossible because a one-dimensional structure of N

atoms is described up to a shift by 2N ÿ 1 real parameters (N

weights of atoms plus N ÿ 1 relative coordinates). By contrast,

the set � from (3) included all wavevectors from the interval

�ÿ50; 50�. By this means, the algorithm extrapolated the

`experimental' scattering data to a region of the reciprocal

space roughly 11 times larger than that where they were

initially de®ned. The reconstructed density map is shown in

Fig. 6. The positions of atoms are perfectly accurate up to a

global translation and inversion. Note also that despite a

smaller resolution of the input data (which is only about 0.65

of the smallest interatomic distance), the amplitudes of the

peaks are restored with a higher accuracy than in Fig. 5. The

value of the average density is equal to 6.690, which is also

much closer to the total charge of 6.7 in Table 1. This can be

explained by the overlapping of wider peaks in Fig. 5, which

makes the correct solution suboptimal. As a result, the

algorithm produces slightly distorted solutions, which have

smaller values of the average density. Narrower peaks in Fig. 6

make this phenomenon much less visible.

One could anticipate a lower success rate in the latter

example because of the bigger number of parameters in ~ �;K
to ®t. Contrary to the expectations, convergence to the global

minimum was obtained in 19 trials out of 20.

Acta Cryst. (2001). A57, 690±699 Pavel Kalugin � New phasing method 695

research papers

Table 1
One-dimensional test structure.

`Charge' x

2.0 0.0
1.5 0.6
1.2 0.25
1.0 0.43
1.0 0.8

Figure 4
An unremovable hole in the atomic surface on the reconstructed density
map. Such holes occur when a line of zeros of the one-component
function  crosses the atomic surface.

Figure 5
The restored density map corresponding to the structure from Table 1.
The input data includes ®rst 12 structure-factor amplitudes. The function
 has two components and is de®ned with the same resolution.
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3.2. One-dimensional Fibonacci chain

A Fibonacci chain is probably the best known example of a

one-dimensional quasicrystal. The chain consists of identical

atoms arranged in a straight line. The distance between

neighbouring atoms may take two values, usually referred to

as `short' and `long' segments of the chain. The ratio of lengths

of short and long segments is � = �51=2 ÿ 1�=2. The short and

long segments alternate following a quasiperiodic Fibonacci

sequence, which is usually de®ned recursively (Senechal,

1995). The same structure can be obtained following the

conventional `cut-and-project' method (see Fig. 7).

The algorithm has been tested on a set of 40 independent

re¯ections with Miller indices h2 � k2 � 25. Although the

structure in Fig. 7 possesses central symmetry, this symmetry

was not imposed as an additional constraint on  . The

reconstructed density map is shown in Fig. 8. The optimization

has yielded the correct solution with 100% success rate for 50

trials with random initial conditions.

3.3. Two-dimensional octagonal Ammann±Beenker tiling

Ammann±Beenker octagonal tiling (Ammann et al., 1992;

Beenker, 1982) refers to quasiperiodic covering of a plane by

squares and 45� rhombi. Structure models associated with this

tiling can be constructed by decorating each tile with atoms.

The simplest decoration consists of placing atoms at vertices

of the squares and rhombi. The resulting structure can be

obtained by the `cut-and-project' technique from a periodic

density function in four-dimensional space. The corresponding

atomic surfaces are two-dimensional perfect octagons, one per

unit cell.

The input data included the re¯ections with

h2 � k2 � l 2 �m2 � 5 (where h, k, l and m stand for four-

dimensional Miller indices). There are 68 pairs of opposite

nodes of the reciprocal lattice satisfying the above inequality.

The 8mm symmetry of the diffraction pattern makes only 14 of

them independent. However, as mentioned above, the point

symmetry was not taken into account. As a result, all 68 pairs

of re¯ections were considered as independent. The function  
had three components. Note that, as no central symmetry is

imposed, the coef®cients ~ �;K from (3) are complex numbers.

The optimal set of coef®cients ~ �;K returned by the algor-

ithm should be converted to the density map in the physical

space. As the direction of the physical space is incommensu-

Figure 7
The `cut-and-project' method of construction of the Fibonacci chain. The
one-dimensional physical space cuts the two-dimensional lattice of
periodically arranged segments (`atomic surfaces'). The atoms, shown as
®lled circles, are located at intersections of `atomic surfaces' with the
physical space.

Figure 8
Reconstruction of the atomic surfaces of the one-dimensional Fibonacci
chain. The input data include 40 independent re¯ections with
h2 � k2 � 25. The function  has two components. The area of the
density map shown includes four unit cells. The axes represent fractional
coordinates.

Figure 6
Density map for the test structure of Table 1 extrapolated from the low-
resolution data.



rate with the four-dimensional periodic lattice, this conversion

implies the Fourier transform of unevenly spaced data. This

precludes using standard FFT algorithms, which signi®cantly

slows down displaying the results. A way around this problem

consists of tilting the physical space slightly to make it

commensurate with the lattice. This is equivalent to replacing

the quasicrystal by a close approximant (Duneau & Audier,

1994).

Fig. 9 depicts the reconstructed density map for an

approximant to Ammann±Beenker tiling. The approximant is

obtained by replacing the vectors u1 = �21=2=2; 1=2; 0;ÿ1=2�
and u2 � �0; 1=2; 21=2=2; 1=2� spanning the physical space by

the rational vectors

u01 � �5=7; 1=2; 0;ÿ1=2�;
u02 � �0; 1=2; 5=7; 1=2�: �19�

Note that the peaks on the density map substantially overlap

because of low resolution of the input data. This is also

con®rmed by the fact that the algorithm yields an average

density as low as 0.718 of its correct value, suggesting signi®-

cant over-optimization. Nevertheless, most of the atomic

positions are correctly resolved, as can be seen from a

comparison with the vertices of the ideal approximant tiling

shown in Fig. 10. The double peaks which are expected owing

to the smoothened edges of the atomic surface (see the

explanation above) are not fully resolved. They manifest

themselves as elongated features on the density map. The

optimization algorithm has converged to the correct solution

with a 100% success rate of ten trials with random initial

conditions.

One could also consider cutting the four-dimensional

density function along different directions. For instance, a cut

in the direction of the atomic surface would reveal its shape.

Under practical conditions, this shape will be distorted

because the cut may not pass exactly through the centre of the

four-dimensional peak corresponding to the atomic surface.

Such a cut is shown in Fig. 11. Despite the low resolution of the

input data, one can clearly see a faceted octagonal shape.

4. Summary and discussion

We have described a new method of structure determination

based on the minimum-charge principle. The method

possesses extrapolating capabilities and can restore atomic

positions from low-resolution data (about 65% of the inter-

atomic distance). It is also applicable to quasicrystals and

incommensurate structures. As the current implementation of
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Figure 10
The vertices of the approximant to Amman±Beenker tiling with the
physical space spanned by the vectors (19).

Figure 9
Density map corresponding to the vertices of an approximant to
Ammann±Beenker tiling, reconstructed from the re¯ections with
h2 � k2 � l 2 �m2 � 5.

Figure 11
The cut through the reconstructed density map of Ammann±Beenker
tiling in the direction parallel to the atomic surface. The scale is arbitrary.
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the algorithm was intended as a demonstration of principle, no

special efforts were taken to make it more ef®cient. Making

the new method practical for crystals with non-trivial point

symmetry and for real quasicrystals requires further research.

The failure to take advantage of the symmetry of the

structure is a major drawback of the current implementation.

The problems related to the symmetry are most visible in the

case of central symmetric structures. It is well known that in

the case of central symmetry the structure factors FK are real

numbers (the same applies to some structure factors when the

point symmetry group contains other elements of order 2). As

a result, each of the constraints (8) on the absolute values of

the Fourier components of ��x� de®nes two disconnected

manifolds in the nM-dimensional space of coef®cients ~ �;K.

The total number of disconnected manifolds de®ned by all

constraints is equal to 2m, where m is the number of real

structure factors. In its current implementation, the optimi-

zation algorithm sticks to one of these pieces in the early

stages and then continues looking for the point of minimal

average density on this piece only. In this way, the global

minimum will most likely be missed.

The other problem is related to the fact that the symmetry

of the function  �x� does not necessarily coincide with that of

the density function ��x�. In the general case, rotations and

translations in real space are accompanied by orthogonal

transformations in the n-dimensional space of components of

 . In other words, the symmetry group of  �x� is an extension

of the symmetry group of ��x� by a subgroup of O�n�.
Generally speaking, the search for the solution corresponding

to the global minimum of the average density should be

performed over all such extensions.

APPENDIX A
Numerical algorithm

This section describes in detail the algorithm used to minimize

j j2 with the constraints (8). The algorithm converges quad-

ratically in the vicinity of a local minimum with the compu-

tational complexity of one iteration O��Mn�3� and the storage

requirement of the order O��Mn�2�. Here, M stands for the

number of points in the set � in (3) and n is the number of

components of  �x�. These properties are suitable for re®ning

an already found approximate minimum. In other words, this

algorithm should be used as a second stage in a two-stage

optimization scheme. Nonetheless, the results of the testing

described above show that this algorithm can work also in a

single stage, starting with random values of parameters.

The minimal charge problem can be stated in the following

abbreviated form:

minimize j j2
subject to hi� � � ci:

�20�

Here,  is a vector in the real Mn-dimensional space. The

minimization of its norm is subject to N non-linear equality

constraints (20) representing the conditions (8). Note that, by

squaring both sides of (8), hi can be chosen in the form of

uniform polynomials of the fourth degree in  . By this means,

all derivatives of hi are readily available in an analytic form.

This makes appropriate application of the sequential quad-

ratic programming (SQP) techniques of optimization (Biggs,

1975; Gill et al., 1984). We have used the following scheme for

an elementary SQP iteration:

(i) Compute the SVD (singular value decomposition) of the

Jacobian J = r h of constraints: J = USV, where UUT = 1̂,

VVT = 1̂ and S is an N � nM diagonal matrix. Denote the ®rst

N rows of V by Vrange and the rest of the rows by Vnull. These

matrices give the projectors correspondingly onto the range

and null spaces of the constraints.

(ii) Compute the Newton step in the range space,

� range � VT
rangeSÿ1UT�cÿ h�;

where Sÿ1 stands for a square N � N diagonal matrix of

inverse singular values.

(iii) Compute the row vector of approximate Lagrange

multipliers,

� � ÿ2 TVT
rangeSÿ1UT :

(iv) Compute the Hessian of the Lagrangian function L =

 T � �h,

H � @ 2L=@ @ :

(v) Compute the projection of H onto the null space of the

constraints Hnull = VnullHVT
null.

(vi) Find the search step � null = VT
nullx in the null space.

Ideally, this step should minimize the quadratic approximation

to the variation of the Lagrangian,

�L ' 2 TVT
nullx� �1=2�xTHnullx:

Note that the quadratic form Hnull is not necessarily positive

de®nite.

(vii) Update  ,

 :�  � � null � � range:

(viii) Repeat steps (i)±(vii) until convergence.

The storage requirements of the algorithm are dominated

by the necessity to store a dense nM � nM Hessian matrix H

and its projection for steps (iv)±(vi). The speed bottlenecks

are steps (v) and (vi), both requiring O��nM�3�multiplications.

The SVD at step (i) and the computation of the Hessian at

step (iv) take O�N2�nM�� and O�N�nM�2� multiplications

correspondingly. Taking into account that M scales as N, the

contribution of these steps to the computation time may be

non-negligible for small n.

The only non-trivial point in the algorithm consists of

handling possibly non-positive de®nite Hessian matrix at step

(vi). The Hessian often has non-positive eigenvalues when the

trial point is far from the local minimum. Note also that for the

considered problem the local minimum is always degenerate

because of translational invariance in the real space and



rotational invariance in the space of the components of the

®eld  �x�. As a result, the Hessian at the local minimum

always has at least d� nÿ 1 zero eigenvalues. The standard

approach to this problem consists of modifying the Hessian

matrix to make it positive de®nite. We use the fact that

diagonalization of a symmetric matrix is numerically stable to

represent Hnull in the form

Hnull �
P

i

�i�i�
T
i ;

where �i form an orthogonal basis in the null space and �i are

the eigenvalues of Hnull. The modi®ed Hessian matrix is then

given by the formula

~Hnull �
P

i

minfj�ij; "g�i�
T
i :

As the matrix Hnull is dimensionless, the regularization par-

ameter " can be set to some constant numeric value, which

should be much bigger than the machine " but still small

enough to keep the convergence quadratic in the vicinity of

the minimum. The matrix ~Hnull is then used to compute the full

Newton update step in the null space,

x � ÿ2 ~Hÿ1
nullVnull :

The author is grateful to E. Tatarinova for fruitful discus-

sions.

References

Ammann, R., Grunbaum, M. & Shephard, G. C. (1992). Discrete
Comput. Geom. 8, 1±25.

ArauÂ jo, J. de, Gomes, A. & da Cunha, J. (1996). Solid State Commun.
97, 1025±1028.

Bak, P. (1986). Phys. Rev. Lett. 56, 861±864.

Beenker, F. P. M. (1982). Technical Report 82-WSK-04. University of
Technology, Eindhoven, The Netherlands.

Biggs, M. (1975). Towards Global Optimization, edited by L. C. W.
Dixon & G. P. Szergo, pp. 341±349. Amsterdam: North-Holland.

Bloom®eld, P. (1976). Fourier Analysis of Time Series ± an
Introduction. New York: Wiley.

Boissieu, M. de, Boudard, M., Hennion, B., Bellissent, R., Kycia, S.,
Goldman, A., Janot, C. & Audier, M. (1995). Phys. Rev. Lett. 75,
89±92.

Cochran, W. (1952). Acta Cryst. 5, 65±68.
Cochran, W. (1955). Acta Cryst. 8, 473±478.
Duneau, M. & Audier, M. (1994). Lectures on Quasicrystals, edited by

F. Hippert & D. Gratias, pp. 283±333. Les Ulis: Les Editions de
Physique.

Duneau, M. & Katz, A. (1985). Phys. Rev. Lett. 54, 2688±2691.
Elser, V. (1986). Acta Cryst. A42, 36±43.
Elser, V. (1999). Acta Cryst. A55, 489±499.
Gabardo, J.-P. (1999). J. Math. Anal. Appl. 239, 349±370.
Gill, P. E., Murray, W., Saunders, M. A. & Wright, M. H. (1984).

Computer-Aided Analysis and Optimization of Mechanical System
Dynamics, edited by E. E. J. Haug, pp. 679±697. Iowa City: NATO.

Harker, D. & Kasper, J. S. (1948). Acta Cryst. 1, 70±75.
Hauptman, H. & Karle, J. (1953). Am. Crystallogr. Assoc. Monogr.

No. 3. Pittsburgh, PA: Polycrystal Book Service.
Janssen, T. (1986). Acta Cryst. A42, 261±271.
Kalugin, P. & Katz, A. (1993). Europhys. Lett. 21, 921±926.
Kalugin, P. A., Kitaev, A. Y. & Levitov, L. S. (1985). JETP Lett. 41,

145±149.
Karle, J. & Hauptman, H. (1950). Acta Cryst. 3, 81±187.
Katz, A. (1989). Number Theory and Physics, edited by J. M. Luck,

P. Moussa & M. Waldschmidt. Berlin: Springer-Verlag.
Lyonnard, S., Coddens, G., Calvayrac, Y. & Gratias, D. (1996). Phys.

Rev. B, 53, 3150±3160.
Rabiner, L. R. & Gold, B. (1975). Theory and Application of Digital

Signal Processing. Englewood Cliffs, NJ: Prentice Hall.
Senechal, M. (1995). Quasicrystals and Geometry. Cambridge

University Press.
Weeks, C. M., DeTitta, G. T., Miller, R. & Hauptman, H. A. (1993).

Acta Cryst. D49, 179±181. (http://www.hwi.buffalo.edu/SnB/.)
Wolff, P. de, Janssen, T. & Janner, A. (1981). Acta Cryst. A37, 625±636.

Acta Cryst. (2001). A57, 690±699 Pavel Kalugin � New phasing method 699

research papers


